
 Review Test Submission: Graded Exam - Unit 6

Course	MAT251: General Calculus II
Test	Graded Exam - Unit 6
Status	
Score	90 out of 150 points
Time Elapsed 53 minutes out of 1 hour.	
Instructions	

Question 1

7.5 out of 7.5
points

Find the area of the region bounded by the curve $r=2-2 \sin \theta$.
Round your answer to three decimal places.
Selected Answer:

A tank is formed by revolving the graph of $y=x^{4}$ around the y-axis. The tank has a height of 16 . Find the value of m such that the line $y=m$ represents the height at which the tank is half full. Round your answer to three decimal places.
Selected Answer:

Question 3

7.5 out of 7.5 points
Given the differential equation $\frac{d y}{d x}=f(x, y)$ and initial condition $y\left(x_{0}\right)=y_{0}$. Euler's method uses the following equation to approximate successive points on the solution curve:
Selected Answer:

Question 4

7.5 out of 7.5 points
Particles A and B are located on the x-axis . The masses and positions of the particles are given by:

$$
\begin{array}{ll}
m_{A}=12 \text { grams } & x_{A}=2 \\
m_{B}=8 \text { grams } & x_{B}=10
\end{array}
$$

What is the center of mass of this two particle system?

Question 5

An object is moving along the coordinate line with velocity $v(t)=5 \cos t, 0 \leq t \leq 2 \pi$. What is the object's displacement during the interval from $t=0$ to $t=2 \pi$?
Selected Answer:

Question 6

If an object is displaced a distance d by a constant force F, then the amount of work done is given by the equation:
Selected Answer:

Question 7

7.5 out of 7.5
points
Which of the following integrals represents the area of the surface formed by revolving the graph of $f(x)=x^{2}, 0 \leq x \leq 1$, about the y-axis ?
Selected Answer:

Question 8

Find the general solution of $\int\left(2 \vec{i}-e^{3 t}\right) d t$.
Selected Answer:

Question 9

Suppose that a force of 20 N stretches a spring 0.4 m beyond its natural length.
How far will a 40 N force stretch the spring?
Selected Answer:
Question 10
Find the volume of the solid obtained by rotating the area bounded by $y=\sin x$ and the x-axis on the interval $0 \leq x \leq 2 \pi$ about the x-axis .

Round your answer to the nearest thousandth.
Selected Answer:

Question 11

7.5 out of 7.5

 pointsstep size $\Delta x=0.5$ to approximate the coordinates of the next three points.
$\left(x_{3}, y_{3}\right)=$
Selected Answer:

Question 12

7.5 out of 7.5
points

Suppose that $f(x)$ is the probability density function describing the distribution for the number of minutes it takes to solve a puzzle.

Which of the following represents the probability that you will solve the puzzle in 8-10 minutes?

Selected Answer:

Question 13

Find the length of the arc:

$$
x=3 \cos t+1, y=3 \sin t-5,0 \leq t \leq \pi
$$

Round your answer to three decimal places.
Selected Answer:
Question 14
The graph below shows the velocity of an object moving along the coordinate line.

What is the object's displacement?
Selected Answer:

Question 15

A projectile is shot into the air with inital speed $v_{0}=40$ and angle of elevation $\theta=\frac{\pi}{6}$.
What is the position of the projectile at $t=3$?
Selected Answer:

Question 16
Which of the following differential equations is NOT separable?

A solid has a flat base, which is bounded by the graph of $y=x^{3}$ and $y=\sqrt{x}$ in the first quadrant only.
Each cross section of the solid perpendicular to the x-axis is the shape of a square. Find the value of k on the interval $\left(0, \frac{1}{2}\right)$ such that the line $x=k$ cuts off one third of the solid's volume. Round your
answer to three decimal places.
Selected Answer: \square

Question 18
Given a curve defined by the parametric equations:

$$
\begin{aligned}
& x=t^{2} \\
& y=3 t
\end{aligned}
$$

The area under the curve from $t=0$ to $t=3$ is given by:
Selected Answer:

Question 19

Suppose we have a rod that is 6 meters long, with density function $\rho(x)=2 x+3$.
What is the center of mass of the rod?
Selected Answer:

Question 20

Given the cost function $C(x)$, the marginal cost is given by:
Selected Answer:

