OK

MAT251: General Calculus II The Course .... Graded Exam - Unit 6 Review Test Submission: Graded Exam - Unit 6



## Review Test Submission: Graded Exam - Unit 6

| Course       | MAT251: General Calculus II  |  |
|--------------|------------------------------|--|
| Test         | Graded Exam - Unit 6         |  |
|              |                              |  |
|              |                              |  |
| Status       | Completed                    |  |
| Score        | 90 out of 150 points         |  |
| Time Elaps   | ed 53 minutes out of 1 hour. |  |
| Instructions | 3                            |  |

Question 1 7.5 out of 7.5 points

Find the area of the region bounded by the curve  $r = 2 - 2 \sin \theta$ .

Round your answer to three decimal places.

Selected Answer:

Question 2 7.5 out of 7.5 points

A tank is formed by revolving the graph of  $y = x^4$  around the y-axis. The tank has a height of 16. Find

the value of m such that the line y = m represents the height at which the tank is half full. Round your answer to three decimal places.

Selected Answer:

Question 3 7.5 out of 7.5 points

Given the differential equation  $\frac{dy}{dx} = f(x, y)$  and initial condition  $y(x_0) = y_0$ , Euler's

method uses the following equation to approximate successive points on the solution curve:

Selected Answer:



Particles A and B are located on the x-axis . The masses and positions of the particles are given by:

$$m_A = 12 \text{ grams}$$
  $x_A = 2$ 

$$m_B = 8$$
 grams  $x_B = 10$ 

What is the center of mass of this two particle system?

Question 5 7.5 out of 7.5 points

An object is moving along the coordinate line with velocity  $v(t) = 5 \cos t$ ,  $0 \le t \le 2\pi$ . What is the object's displacement during the interval from t = 0 to  $t = 2\pi$ ?

Selected Answer:

Question 6 7.5 out of 7.5 points

If an object is displaced a distance d by a constant force F, then the amount of work done is given by the equation:

Selected Answer:

Question 7 7.5 out of 7.5 points

Which of the following integrals represents the area of the surface formed by revolving the graph of  $f(x) = x^2$ ,  $0 \le x \le 1$ , about the y-axis ?

Selected Answer:



Question 8 0 out of 7.5 points

Find the general solution of  $\int (2\vec{t} - e^{3t}\vec{j})dt$ .

Selected Answer:

Question 9 7.5 out of 7.5 points

Suppose that a force of 20 N stretches a spring 0.4 m beyond its natural length.

How far will a 40 N force stretch the spring?

Selected Answer:

Question 10 0 out of 7.5 points

Find the volume of the solid obtained by rotating the area bounded by  $y = \sin x$  and the x-axis on the interval  $0 \le x \le 2\pi$  about the x-axis .

Round your answer to the nearest thousandth.

Selected Answer:

Question 11 0 out of 7.5 points

Given the differential equation  $\frac{dy}{dx} = x + y$  and initial point (0, 0), use Euler's method with

step size  $\Delta x = 0.5$  to approximate the coordinates of the next three points.

 $(x_3, y_3) =$ 

Question 12 7.5 out of 7.5 points

Suppose that f(x) is the probability density function describing the distribution for the number of minutes it takes to solve a puzzle.

Which of the following represents the probability that you will solve the puzzle in 8-10 minutes?

Selected Answer:



Question 13 0 out of 7.5 points

Find the length of the arc:

$$x = 3\cos t + 1$$
,  $y = 3\sin t - 5$ ,  $0 \le t \le \pi$ 

Round your answer to three decimal places.

Selected Answer:



Question 14 0 out of 7.5 points

The graph below shows the velocity of an object moving along the coordinate line.



What is the object's displacement?

Selected Answer:

Question 15 7.5 out of 7.5 points

A projectile is shot into the air with inital speed  $v_0 = 40$  and angle of elevation  $\theta = \frac{\pi}{6}$ .

What is the position of the projectile at t = 3?

Selected Answer:



Question 16 0 out of 7.5 points

Which of the following differential equations is NOT separable?



Question 17 0 out of 7.5 points

A solid has a flat base, which is bounded by the graph of  $y=x^3$  and  $y=\sqrt{x}$  in the first quadrant only. Each cross section of the solid perpendicular to the x-axis is the shape of a square. Find the value of k on the interval  $\left(0,\frac{1}{2}\right)$  such that the line x=k cuts off one third of the solid's volume. Round your

answer to three decimal places.

Selected Answer:



Question 18 0 out of 7.5 points

Given a curve defined by the parametric equations:

$$x=t^2$$

$$y = 3t$$

The area under the curve from t = 0 to t = 3 is given by:

Selected Answer:



Question 19 7.5 out of 7.5 points

Suppose we have a rod that is 6 meters long, with density function  $\rho(x) = 2x + 3$ .

What is the center of mass of the rod?

Selected Answer:



Question 20 7.5 out of 7.5 points

Given the cost function C(x), the marginal cost is given by:

